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Abstract. We intrcduce a generalization of Wegner’s n-orbital model for the description of 
randomly disordered systems by replacing his ensemble of Gaussian random matrices by an 
ensemble of randomly rotated matrices. We calculate the one- and mwp-particle Green functions 
and the conductivity exactlyjn the limit n -+ m. Our solution solves the w e e d  potential 
appmximation equation of the (n = 1) Anderson model for arbiuarily distributed disorder. We 
show haw the Lloyd model is included in our model. 

The treatment of physical systems with disorder presents one of the great challenges in 
statistical physics. Realistic multi-site models, like the Anderson model [l], are in general 
unsolvable. Exact calculations are only possible in one pathological special case-namely 
for the Lloyd model [Z] with Cauchy distributed disorder. Otherwise one has to use 
approximation techniques which reduce the multi-site to single-site models and treat them 
self-consistently. The most prominent of these methods is the so-called coherent potential 
approximation (CPA), see, e.g., 131. 

Wegner [4] introduced a generalization of the Anderson model by putting n electronic 
states at each site and describing fhe disorder ~ by Gaussian random matrices in these 
electronic states. Whereas for n = 1 this reduces to the usual (unsolvable) Anderson 
model, the opposite limit n -+ CO becomes exactly solvable. Interestingly, the solution of 
this multi-site model coincides with a special CPA solution. 

In this letter we introduce a generalization of Wegner’s model by replacing his 
ensemble of Gaussian random matrices by a more general ensemble of random matrices- 
thus allowing arbitrarily distributed disorder. Nevertheless, by using recent results from 
Voiculescu [5, 61 and Speicher [7, 81 on the mathematical concept of ‘freeness’, we are still 
able to calculate the Green functions of this model in the limit n --i’ CO exactly. Again oUr 
solution solves the CPA equation of the (n = 1) Anderson model. Hence OUT model can be 
regarded as a rigorous mean-field model for CPA for arbiaarily distributed disorder. 

Let us first recall Wegner’s model. He considers a d-dimensional lattice where at each 
site r there are n electronic levels Ira) numbered by (Y = 1, . . . , n. The interaction is 
governed by a Hamiltonian of the form 

(1) H = Ho + H, 
5 Supported by a fellowship fiom the DFG. 
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where HO is deterministic, translational-invariant and diagonal in the electronic levels, 

HO = v,-,,lror)(r’orl 
,,+.a 

and HI describes the site-diagonal disorder 

There, fr = ((l/fi)f~’)~,s,l are Gaussian random matrices and the entries of fr and of 
frt are independent for r # r‘. (This is the site-diagonal model of Wegner, we will not treat 
his ‘local gauge invariant’ model here.) By using techniques for calculating moments of 
Gaussian random matrices [9, 101. Wegner was able to calculate the one and two-particle 
Green function in the limit n 4 CO. 

To explain our generalization let us diagonalize the random matrices fr in the form 
fr = u, f+:. Thus the ensemble of the fr is determined by an ensemble of diagonal 
matrices f; and an ensemble of unitary matrices U,. In the limit n + 03, Wegner’s 
original formulation is recovered if the diagonal f; are taken as deterministic matrices 
having Wigner’s semi-circle [9] as the eigenvalue distribution and if the ur are random 
unitary matrices, given by the canonical invariant or Haar measure on U(n), such that U, 
and U+ are chosen independently of U(n) for r # r’. Since this ensemble is invariant under 
independent rotations at different sites we may also replace the different f; by one single 
(not necessarily diagonal) f ,  i.e. we have f7 = ur fu; with’the ensemble of ur as stated 
above. 

The advantage of this reformulation of Wegner’s model is that now a generalization is 
obvious: we are a priori totally free in the choice for f. Thus our model is given by the 
following Hamiltonian: 

where f is a deterministic Hermitian n x n matrix and U, E U(n) are random unitary 
matrices, chosen independently for different sites. This means that we act at each site r 
with a copy fr := u, fu ;  of the given operator f ,  but that the basis for fr and the basis for 
f+ are rotated randomly against each other for all pairs of different sites r # r’. 

The possibility of treating this model in the limit n + w arises from the important 
observation by Voiculescu [5] (see also [ll]) that there is a connection with his concept 
of free random variables [12, 6, 131. Denote by (. . the average over our ensemble of 
random unitary matrices and let 

(. . .) := - C(a1.. . [or) (5) 

count the averaged eigenvalue distribution of our n x n matrices. Then we have for all 
m E N and for all polynomials PI.. . . , pm with ( p i ( f ) )  = 0 (i = 1 , .  . . , m) in the limit 
n + w that also 

(pl(fr(l))pz(fr(z)). . . Pm(fr(m))) 0 (6) 

for all sequences of indices r(1). . . . , r(m),  where all c’onsecutive indices %e different, i.e. 
where r ( i )  # r(i + 1) for all i = 1, . . . , m - 1. An example of (6) is 

(Pl(fl)PZ(fi)P3(fI)P4(f2)) = 0 (7) 
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whereas for sequences with coinciding neighbouring indices one gets non-vanishing results 
like 

(8) 

The property (6). recently introduced by Voiculescu [13,6] under the name of ‘freeness’ in 
the mathematical literature, allows, as in Wegner’s case, all mixed moments of the matrices 
f, to be calculated (as, e.g., in (8)) and thus exact expressions to be derived for the Green 
functions of our model in the limit n + 00. Whereas one usually finds an infinite hierarchy 
of equations for averaged quantities, it is exactly the property of freeness (6) which closes 
our equations. For an effective handling of the calculations one needs the R-transform 
machinery of Voiculescu [14, 61 and Speicher’s concept of non-crossing cumulants [7, 81. 
The concrete calculations will be published elsewhere, here we only want to give the results. 

The most important quantity is (the diagonal part of) the oneparticle Green’s function 
(1PG) 

(Pl(fI)PZ(fZ)PS(fZ)~4(fi)) = (PI (fi)P4(fi))(PZ(f2)P3(fZ)) 
= (PI (f)P4(f))(PZ(f)P,(f)). 

the spectral function of which yields the density of states. Note that, due to the translation 
invariance of our Hamiltonian, G(z)  is independent of r and hence the local and global 
density of states coincide. If we denote in the same way the Iffi of the deterministic and 
disorder parts of H by Go and G I ,  respectively, i.e. 

G d z )  = r - I I z 1 H 0 l r )  

then the crucial property (6) allows us to derive the following self-consistent equation for 
I .  . .  .. G(z):. 

G(z)  = GO(Z - Ri(G(z)))  (12) 

where RI ( z )  is a kind of self-consistent self-energy for H I ,  namely it is defined by 

with R1(0) = 0. I n  the special case of a semi-cucle eigenvalue distribution for f, GI is 
given by 

showing that &(z)  = $2. In this case our formula (12) reduces to Wegner’s result [4, 151: 

(15) 

Given G(z)  and RI (z), one can derive linear self-consistent equations for the one-particle and 
two-particle Green’s functions. Again, the freeness property (6) is the essential ingredient 
for closing the equations. For the Fourier transform of the 1PG one obtains 

G(z) = G0(Z - C W Z ) ) .  
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with U, = j ,  u(q)eiqr where 

V being the volume of the first Brillouin zone (1~2). For Rl(z)  = uzz this reduces again to 
Wegner's result [4, 151. 

The ZPC determines the coQductivity as a velocity-velocity correlation function. 
Although, in general, the ZPG contains an additional term, one obtains by the symmetry 
argument U-, = U, that only the product of the IPGS contributes. Thus one finds for zero 
temperature and in the dc-limit w + 0 

where 
lVu(q)12 B := 1 I W  - C(EF +U +iO+)l*lv(q) - <(E,= + io+)? 

with C(z) = z - R,(G(z)) and the spectral function 

(18) 

For Rl(z )  = u2z this reduces to Wegner's result in a form given by Khorunzhy and Pastur 

The generality of our solution may be seen from the fact that it also includes the Lloyd 
model as a special case: Namely, choose a Cauchy distribution with parameter y as the 
eigenvalue distribution for f. Then 

I .. 
@ ( R I ( G ) ; E )  = --ImRI(G(z=E+iO')). 

?r 

~ 5 1 .  

hence Rl(z) = iy. This shows that the Cauchy distribution behaves in all relevant aspects 
like an imaginary 6 distribution. For 6 distributions, however, there is no difference between 
our model and the original Anderson Hamiltonian (see also [16, 171). Since the Anderson 
model with Cauchy distributed disorder is nothing other than the Lloyd model, the latter 
is included in our investigations. In particular we recover from (12) the IPG of the Lloyd 
model [2] 

(20) 
One surprising feature of the Wegner model is that its solution coincides with a special 

CPA solution. This also generalizes to our model. In general, the CPA solution for the 
Anderson model with singlesite random variable X is given by the two equations 

G(z) = GO(Z - iy). 

G(z) = GO(Z - C(Z)) (21) 
and 

The first of these equations coincides with our solution (12) if we identify E(z) = Rl(G(z)).  
By using the equivalent form of (13), namely 

G I  (RI  (z) + z-') = z (23) 
it can be checked that our solution also fulfils (22) if we choose as distribution for X the 
eigenvalue dishibution of f .  Note that we rigorously specified our model in the beginning 
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and that we are able to calculate all quantities without any-further approximation. Thus our 
multi-site model is a rigorous mean-field model for the usual single-site CPA. One should also 
note that our previous remarks about the Lloyd model can now be taken as an explanation 
for the well known fact that the CPA is exact for the Lloyd model. 

As an instructive example of our formalism let us consider the one-dimensional lattice 
with nearest-neighbour interaction ind binary site-diagonal disorder for the special case 
v = m = 1, where 2u is the half-band-width and gz is the variance of the disorder. Then 
we have Go(z) = I/- and RI (2) = (m - 1)/2z, which yields as a solution of 
(12): 

This provides 

i.e. together with (17) a finite conductivity everywhere inside the band [-4,~&]. 
Since we can prescribe  in^ our model an arbitrary distribution for f, or for X in the 

CPA formulation, it is clear that our formalism is capable of covering many quite different 
examples, e.g., a superposition of binary noise or, more generally, the recently investigated 

~q-noise [18]. Furthermore, OUT description using the theory of free random variables and 
the notion of non-crossing cumulants allows a straightforward generalization to the case of 
dynamical disorder and thus promises to give a rigorow model for dynamical CPA. These 
subjects will be pursued further. 

We acknowledge helpful discussions with Franz Weper and Petr Chvosta. This work was 
supported by the Deutsche Forschungsgemeinschaft (RS) .  
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